
Dr. Marques Sophie Linear algebra II SpringSemester 2016
Office 519 marques@cims.nyu.edu

Problem Set # 12

Justify all your answers completely (Or with a proof or with a counter example)
unless mentioned differently. No step should be a mystery or bring a question. The grader
cannot be expected to work his way through a sprawling mess of identities presented without
a coherent narrative through line. If he can’t make sense of it in finite time you could lose
serious points. Coherent, readable exposition of your work is half the job in mathematics.
You will loose serious points if your exposition is messy, incomplete, uses mathematical
symbols not adapted...

Exercise 1:
If B is non degenerate, symmetric over F = C. Prove that there is a bases X such that
[B]X = In×n. In coordinates, for this basis B(x, y) =

∑n
j=1 xjyj.

Solution: We know (by our discussion of F = R), we can put B in diagonal form
[B]X = diag(λ1, · · · , λn), with each λi 6= 0 since B is non degenerate. Now take square
roots in C and let P = diag(1/

√
λ1, · · · , 1/

√
λn) to get P T [B]XP = In×n.

Exercise 2: Recall that an elementary matrix is a square matrix obtained by perform-
ing one column/row operation (switch, scale or replacement) to the identity matrix.

1. Let E be an elementary n × n matrix corresponding to a column operation and
let A be a square n× n matrix. Describe the transformation from A to AE and
the transformation from A to ETA as an operation on the columns or the rows
of A compare it with the one producing E.

2. Prove that A is invertible if and only if A is a product of elementary matrices.

3. Let

A =

 3 1 2
1 4 0
2 0 −1


we want to find Q invertible such that QTAQ = D where D is diagonal. Use ele-
mentary operations successively and the previous question to build Q as a product
of elementary matrices and get an algorithm to get D. (First, find an elementary

matrix E1, such that ET
1 AE1 is

 3 0 2
0 4 0
2 0 −1

). What is the signature of A?
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Solution

1. If an elementary row operation is performed on an m× n matrix A, the resulting
matrix can be written as EA, where the m×n matrix A, the resulting matrix can
be written as EA, where m× n matrix can be written as EA, where the m×m
matrix E is created by performing the same row operation on Im.

2. Suppose that A is invertible. Then since the equation Ax = b has a solution for
each b, then A has a pivot position in each row. Because A is square, the n pivot
positions must be on the diagonal, which implies the reduced echelon form of A
is In. That is, A ∼ In.
Now, suppose A ∼ In. Then there is a sequence of row operation that transforms
A into In, that is the same as the existence of elementary matrix Ei such that
E1 · · ·EpA = In. So that A = (E1 · · ·Ep)−1 and A−1 = E1 · · ·Ep. So that A is
invertible.

3. First, we do C1 ↔ C2, then

E1 =

 0 0 1
0 1 0
1 0 0


then

ET
1 AE1 =

 −1 0 2
0 4 1
2 1 3


Then we do C2 ← C3 + 2C1,

E2 =

 1 0 0
0 1 −1/2
0 0 1


so

ET
2 E

T
1 AE1E2 =

 −1 0 0
0 4 1
0 1 7


Then we do C2 ← 1/2C2 and

E3 =

 1 0 0
0 1/2 0
0 0 1


so

ET
3 E

T
2 E

T
1 AE1E2E3 =

 −1 0 0
0 1 1/2
0 1/2 7
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Then we do C3 → C3 − 1/2C2 and

E4 =

 1 0 0
0 1 −1/2
0 0 1


so

ET
4 E

T
3 E

T
2 E

T
1 AE1E2E3E4 =

 −1 0 0
0 1 0
0 0 27/4


Then we do C3 ← C3 ·

√
27
4

, and

E5 =

 1 0 0
0 1 0

0 0 3
2

√
3


so

ET
5 E

T
4 E

T
3 E

T
2 E

T
1 AE1E2E3E4E5 =

 −1 0 0
0 1 0
0 0 1


The signature is (−1, 1, 1).
Then

P0 = E1E2E3E4 =

 0 0 1
0 1/2 −1/4
1 2 2


diagonalized A to

P T
0 AP0 =

 −1 0 0
0 1 0
0 0 27/4


P1 = E1E2E3E4E5 =

 0 0 3
√
3

2

0 1/2 −3
√
3

8

1 2 3
√
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diagonalized A to

P T
1 AP1 =

 −1 0 0
0 1 0
0 0 1


Exercise 3: If X , Y are bases in V and we define GB,X , GB,Y as defined in class. Prove
that

GB,Y = S−1GB,XS

where S = [id]X ,Y
Solution:

GB,X = {E ∈ GL(n,F) : ET [B]XE = [B]X}
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and
GB,Y = {E ∈ GL(n,F) : ET [B]YE = [B]Y}

we know that there is S invertible such that

[B]Y = ST [B]XS

GB,Y = {E ∈ GL(n,F) : ETST [B]XSE = ST [B]XS}
= {E ∈ GL(n,F) : (SES−1)T [B]X (SES−1) = [B]X}
= S−1GB,XS

Exercise 4: Suppose B : V × V → F is a non degenerate bilinear form on a finite
dimensional vector space. For x ∈ V define the linear functional lx such that

< lx, v >= B(v, x) for all v ∈ V

Verify that lx : V → F is in fact a linear map, and the correspondence Φ : V → V ∗

given by Φ(x) = lx is an F-linear isomorphism between V and the dual space V ∗.
Solution:

1. lx : V → F is linear because B(v1, v2) is linear in each entry if other entry is held
fixed

2. Φ : V → V ∗ at Φ(x) = λx is also a linear map because

Φ(c1x1+c2x2)v = c1B(v, x1)+c2B(v, x2) =< c1lx1+c2lx2 , v >= [c1Φ(x1)+c2Φ(x2)](v)

∀v ∈ V , by definition of (+) in the dual space V ∗.

3. ker(Φ) is trivial, so Φ is one-to-one. In fact, Φ(x) = 0 in V ∗ if and only if
B(v, x) = 0, ∀v ∈ V . Since dim(V ) < ∞ ⇒ dim(V ∗) = dim(V ), Φ must in fact
be a bijection: a linear isomorphism between vector spaces. Φ is ”canonical” in
that no bases were chosen in order to define Φ- its construction is ”coordinate
free”.

Exercise 5: Let B : V ×V → F be a nondegenerate symmetric bilinear form on a finite
dimensional vector space. If W is a subspace in V define W⊥ = {v ∈ V : B(v, w) =
0 for all w ∈ W}. Prove that

1. dim(W ) + dim(W T ) = dim(V )

2. W1 ⊆ W2 ⇒ (W2)
⊥ ⊆ (W1)

⊥

3. (W⊥)⊥ = W .

Solution: 2. is easy. 1.⇒ 3. is also easy because dim(W⊥)+dim((W⊥)⊥) = dim(V ) =
dim(W ) + dim(W⊥) thus dim((W⊥)⊥) = dim(W ). But W ⊆ (W⊥)⊥. Because if
x ∈ W T , w ∈ W , we have B(w, x) = 0. So B(w,w⊥) = 0 and therefore W ⊆ (W⊥)⊥.
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By finite dimensionality (W⊥)⊥ = W . So we are reduced to proving 1..
When we identify V ' V ∗ via Φ as in the previous exercise, we find that

Φ(W T ) = {lx :< lx,W >= B(W,x) = {0}} = {l ∈ V ∗ :< l,W >= {0}} = W ◦

The last item W ◦ is the annihilator in V ∗ if the subspace W in V , a construction dis-
cussed earlier inn the fact in connection with the dual space V ∗ of a vector space V .
It suffices to show (∗) dim(V ◦) = dim(V ) − dim(W ) since Φ preserves dimensions of
spaces. But (∗) is easy using the concept of dual bases {ei}, {ei}∗ in V , V ∗ (provided
the dimension is <∞.)
To prove (∗) let e1, · · · er be a basis for W , and augment by er+1, · · · , en to get a
basis for V ; then let {e∗i } be the dual basis such that < e∗i , ej >= δi,j. Now F −
Span{e∗r+1, · · · , e∗n} is in W ◦ since k ≥ r + 1 then < e∗k, ej >= 0, 1 ≤ j ≤ r, then
< e∗k,W = F − Span{e∗1, · · · , e∗n} is in W ◦ since k ≥ n − r = dim(V ) − dim(W ). On
the other hand, if W ◦ is larger than F − Span{e∗r+1, · · · , e∗n}, it contains some func-
tional l of the form

∑n
k=1 cke

∗
k with ci 6= 0 for some index 1 ≤ i ≤ r. But then

< l, ei >=
∑n

k=0 ck < e∗k, ei >=
∑n

k=0 ckδk,i = ci 6= 0. That is impossible because
l ∈ W ◦ and ei ∈ W = F− span{ek : 1 ≤ j ≤ r}.

Exercise 6:
If T : V → W is a linear map between finite dimensional inner product spaces the
adjoint T ∗ : W → V is the unique F-linear operator such that

(T ∗(w), v)V = (w, T (v))W , ∀v ∈ V,w ∈ W

Prove that

1. Range(T ∗) = Ker(T )⊥

2. Range(T ) = Ker(T ∗)⊥

3. If T : V → W and S : W → U are linear maps between finite dimensional inner
product spaces, show that (S ◦ T )∗ : U → V is equal to T ∗ ◦ S∗.

4. Show that T ∗∗ = T .

Solution :

1. If w ∈ W , T ∗(w) ∈ K(T )⊥ because v ∈ K(T ) then

(T ∗(w), v)V = (w, T (v))V = (w, 0) = 0

for all w ∈ W . So v is orthogonal to R(T ∗) = T ∗(W ) and R(T ∗) ⊆ K(T )⊥. Now,
look at R(T ∗)⊥: v ∈ R(T∗)⊥ ⇒ (T ∗ (W ), v)V = (W,T (v))V = 0, thus T (v) = 0
and v ∈ K(T ). Since 0 is the only vector in W that is orthogonal all of W . Thus
R(T∗)⊥ ⊆ K(T ). But in a finite dimensional inner product space (M⊥)⊥ = M for
any subspace and M1 ⊆ M2 ⇒ M⊥

2 ⊆ M⊥
1 ; thus K(T )⊥ ⊆ R(T ∗) = (R(T ∗)⊥)⊥.

Combining these observations, we get R(T ∗) = K(T )⊥.
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2. Using 1. and the fact that T ∗∗ = T for any F-linear operator T : V → W , we get

R(T ) = R((T ∗)∗) = K(T ∗)⊥

3. For linear operators A,B : V → W , A = B ⇔ (Av,w)W = (Bv,w)W , ∀v ∈ V ,
w ∈ W . For u ∈ U and v ∈ V , we have

((S ◦ T )∗(u), v)V = (u, S(T (v)))U = (S∗(u), T (v))W = (T ∗S∗(u), v)V

so (S ◦ T )∗ = T ∗ ◦ S∗.

4. For v ∈ V , w ∈ W , we have

(T ∗∗(v), w)W = (v, T ∗(w))V = (T ∗(w), v)V = (w, T (v))W = (T (v), w)W = (T (v), w)W

Thus T ∗∗(v) = T (v), ∀v ∈ V and T ∗∗ = T as operators from V → W .

Exercise 7:
Prove that every positive definite operator P on an inner product space has a unique
positive definite square root A =

√
P i.e. A ≥ 0 and A2 = T .

Solution: P is self adjoint (definition of P ≥ 0), so it has spectral decomposition
P =

∑r
i=1 λiPi, Pi =orthogonal projection onto Eλi(P ); the λi are real since P ∗ = P

and in fact are non negative, for if vi 6= 0 in Eλi(P ), we must have

0 ≤ (P (vi), vi) =
r∑

k=1

λk(Pk(vi), vi) = λi(vi, vi) = λi||vi||2

with ||vi|| > 0. Taking
√
λi ≥ 0, the operator A =

∑r
k=1

√
λkPk is positive definite:

A∗ = A because P ∗k = Pk, for each k and
√
λk is real, and

(Av, v) =
∑r

k=1

√
λk(Pkv, v) =

∑
k

√
λk(P

2
k (v), v) =

∑
k

√
λk(Pk(v), Pk(v))

=
∑

k

√
λk||Pk||2 ≥ 0, ∀v ∈ V

As for uniqueness, if A ≥ 0 and A2 = P then A =
∑r

j=1 µjQj where Qj =projection
onto Eµj(A) and sp(A) = {µj}. THe µj are real non negative.
Since A ≥ 0and A2 =

∑
j µ

2
jQj. Thus P = A2 is equal to µ2

jI on Eµj(A), which implies

{µ2
j} ⊆ sp(P ). So µ2

j = λi, for some λi ∈ sp(P ). Since µi ≥ 0, we have µ2
j′ = µ2

j if
µj′ = µj. So the {µ2

j} are distinct eigenvalues for P , i.e. if we related things we have

λi = µ2
i , 1 ≤ i ≤ r. Since Av = µjv =

√
λjv, for v ∈ Eλj and V = ⊕jEλj . Eµj(A) must

coincide with the eigenspace Eλj = µ2
j(P ) for P . Thus the spectral projections for A

and P are the same: Qj = Pj, 1 ≤ j ≤ r. Since λj ∈ R has just one non-negative square
root, we must have µj =

√
λj for each j. So A =

∑r
j=1

√
λjPj, proving uniqueness of

the positive definite square root of P .
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Exercise 8:
For the self-adjoint matrix

A =

 2 1 1
1 2 1
1 1 2


1. Is A orthogonally diagonalizable on C3.

2. Determine the projections pλ (λ ∈ Sp(A)) as operators on C3.

Solution:

1. A∗ = A. So A is orthogonally diagonalizable for the standard inner product in
C3. That answer 1.

2. Eigenvalues are roots of PA(λ) = −λ3 + 6λ2 − 9λ+ 4.Trial and error locates, one
root 1. Long division of pA(λ) by (λ− 1) yields

pA(λ) = (λ− 1)(λ2 − 5λ+ 4) = (λ− 1)2(λ− 4)

So sp(A) = {1, 4}
Eigenspace λ = 1. Solve (A− I)x = 0

A− I =

 1 1 1
1 1 1
1 1 1

→
 1 1 1

0 0 0
0 0 0



Eλ=1 = {

 −x2 − x3x2
x3

 : x2, x3 ∈ C} = C

 −1
1
0

⊕ C

 −1
0
1

 = Cf1 ⊕ Cf2

For λ = 4

A−4I =

 −2 1 1
1 −2 1
1 1 −2

→
 1 1 −2

1 −2 1
−2 1 1

→
 1 1 −2

1 −3 3
0 3 −3

→
 1 1 −2

0 1 −1
0 0 0


So

Eλ=4 = C

 1
1
1

 = Cf3

Note that {f1, f2} are orthogonal to f3 but (f1, f2) 6= 0. So to get an orthogonal
basis vectors, we could take f ′1 = f1 +f2 = (−2, 1, 1) and f ′2 = f1−f2 = (0, 1,−1)
with (f ′1, f

′
2) = 0 but same C-span as f1, f2. Now, ||f ′1|| =

√
6, ||f ′2|| =

√
2, ||f3|| =√

3. So we get an orthonormal basis of eigenvectors Y = {f̃1 = 1√
6
(−2e1+e2+e3),

f̃2 = 1√
2
(e2 − e3), f̃3 = 1√

3
(e1 + e2 + e3)}. (If X = {e1, e2, e3} is the standard ON

basis in C3. )
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If T = λ1Pλ1 + λ2Pλ2 (λ1 = 1, λ2 = 4) is the spectral decomposition of T = LA,
then for Y-basis

[Pλ1 ]Y =

 1 0 0
0 1 0
0 0 0


while

[Pλ2 ]Y =

 0 0 0
0 0 0
0 0 1


To get the matrices with respect with X we note that

[pλi ]X ,X = [Id]X ,Y [pλi ]Y,Y [Id]Y,X

and from the identities 
f̃1 = −2e1+e2+e3√

6

f̃2 = 1√
2
e2 − 1√

2
e3

f̃3 = 1√
3
(e1 + e2 + e3)

we get

S = [Id]X ,Y =


−2√
6

1 1

0 1√
2

1√
2

1√
3

1√
3

1√
3


[pλi ]X ,X = S[pλi ]Y,YS

∗

=


−2√
6

0 1/3

1 1√
2

−1√
2

1 −1√
2

1√
3


 1 0 0

0 1 0
0 0 0



−2√
6

1 1

0 1√
2

1√
2

1√
3

1√
3

1√
3


=


2
3

−2√
6
−2√
6

−2√
6

3
3

1
2

−2√
6

1
2

3
2


A similar calculation yields [Pλ2 ]X ,X .

Exercise 9:
Let H : V × V → F with dim(V ) > 1, bilinear form. Is it true or false that for any
x ∈ V , there is y ∈ V such that y 6= 0 but H(x, y) = 0?

Solution: Argue by contradiction. If not then there is x0 ∈ V such that H(x0, y) 6= 0
for all y 6= 0. The map lx0 : V → F, lx0(v) = H(x0, v) is a linear functional
lx0 ∈ V ∗. Now, dim(ker(lx0)) + dim(range(lx0)) = n = dim(V ), and range(lx0) = 0
or F. So dim(range(lx0)) = 0 or 1 and dim(ker(lx0)) = n or n − 1. In our situation
H(x0, y) 6= 0 for all y 6= 0 implies ker(lx0) = 0. We are assuming n = dim(V ) > 1, so
dim(ker(lx0) ≥ n− 1 ≥ 1 which contradict the fact that ker(lx0) = {0}.
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Exercise 10:
Show that H : R2 × R2 → R is an antisymmetric bilinear form, where

H(x, y) = det(

(
x1 y1
x2 y2

)
)

with x =

(
x1
x2

)
and y =

(
y1
y2

)
;

Solution: H(x, y) = x1y2 − x2y1. Note the auto symmetry: H(y, x) = −H(x, y).
Furthermore, H(cx, y) = cH(x, y) = H(x, cy) is trivial and

H(x+x′, y) = (x1 +x′1)y2− (x2 +x′2)y1 = x1y2 +x′1y2−x2y1−x′2y2 = H(x, y)+H(x′, y)

and similarly, H is linear in the second variable when x is fixed.
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